Measuring Stochastic Long-Range Dependence
Calculating the Hurst Exponent of the S&P 500

Ajay Dugar

Departments of Economics and Mathematics

University of Illinois Economics Research Symposium 2018
Outline

1 Economic Assumptions
 - Common Assumptions
 - Initial Analysis

2 Findings
 - Distributions
 - Calculations

3 Summary
Outline

1 Economic Assumptions
 - Common Assumptions
 - Initial Analysis

2 Findings
 - Distributions
 - Calculations

3 Summary
What are the foundational assumptions when it comes to market research, and where do they come from?

- Changes in markets follow a Gaussian random walk (Bachelier)
What are the foundational assumptions when it comes to market research, and where do they come from?

- Changes in markets follow a Gaussian random walk (Bachelier)
- Given this normal distribution, we can calculate risk and value of assets, i.e. β and CAPM (Markowitz and Sharpe)
What are the foundational assumptions when it comes to market research, and where do they come from?

- Changes in markets follow a Gaussian random walk (Bachelier)
- Given this normal distribution, we can calculate risk and value of assets, i.e. β and CAPM (Markowitz and Sharpe)
- Knowing the value and risk of an asset, we can determine its volatility (Black and Scholes)
What are the foundational assumptions when it comes to market research, and where do they come from?

- Changes in markets follow a Gaussian random walk (Bachelier)
- Given this normal distribution, we can calculate risk and value of assets, i.e. β and CAPM (Markowitz and Sharpe)
- Knowing the value and risk of an asset, we can determine its volatility (Black and Scholes)
- With these findings, assuming common rationality, all asset prices reflect complete information, i.e. EMH (Fama)
Outline

1. Economic Assumptions
 - Common Assumptions
 - Initial Analysis

2. Findings
 - Distributions
 - Calculations

3. Summary
What Went Wrong?

- We first observe that these orthodox methodologies stem from Bachelier’s work with Parisian bonds in the late 1800s.
What Went Wrong?

- We first observe that these orthodox methodologies stem from Bachelier’s work with Parisian bonds in the late 1800s.
- If these underlying assumptions about market volatility are wrong, the whole system comes crumbling down.
What Went Wrong?

- We first observe that these orthodox methodologies stem from Bachelier’s work with Parisian bonds in the late 1800s.
- If these underlying assumptions about market volatility are wrong, the whole system comes crumbling down.
- Benoit Mandelbrot, Eugene Fama’s thesis advisor, and Nobel laureate Kahneman both strongly refute the validity of the EMH.
What Went Wrong?

- We first observe that these orthodox methodologies stem from Bachelier’s work with Parisian bonds in the late 1800s.
- If these underlying assumptions about market volatility are wrong, the whole system comes crumbling down.
- Benoit Mandelbrot, Eugene Fama’s thesis advisor, and Nobel laureate Kahneman both strongly refute the validity of the EMH.
- The Great Recession and behavioral economics both make compelling cases for the widespread underestimation of risk and rationality in economic analysis.
What Went Wrong?

- We first observe that these orthodox methodologies stem from Bachelier’s work with Parisian bonds in the late 1800s.
- If these underlying assumptions about market volatility are wrong, the whole system comes crumbling down.
- Benoit Mandelbrot, Eugene Fama’s thesis advisor, and Nobel laureate Kahneman both strongly refute the validity of the EMH.
- The Great Recession and behavioral economics both make compelling cases for the widespread underestimation of risk and rationality in economic analysis.
- Where do we go from here?
What Went Wrong?

- We first observe that these orthodox methodologies stem from Bachelier’s work with Parisian bonds in the late 1800s.
- If these underlying assumptions about market volatility are wrong, the whole system comes crumbling down.
- Benoit Mandelbrot, Eugene Fama’s thesis advisor, and Nobel laureate Kahneman both strongly refute the validity of the EMH.
- The Great Recession and behavioral economics both make compelling cases for the widespread underestimation of risk and rationality in economic analysis.
- Where do we go from here? Fractal analysis.
Outline

1. Economic Assumptions
 - Common Assumptions
 - Initial Analysis

2. Findings
 - Distributions
 - Calculations

3. Summary
Almost all models use the assumption of independent random walks.
Almost all models use the assumption of independent random walks.

This results in a Gaussian change distribution.
Almost all models use the assumption of independent random walks.

This results in a Gaussian change distribution.

Taking a look at real data, we’ll test this assumption and find a better fit.
Choosing a Distribution
The normal distribution fails to sufficiently account for extreme changes.
Cauchy Distribution

- The normal distribution fails to sufficiently account for extreme changes.
- If we took the two most extreme events (The Emergency Banking Act increase and the Black Monday Crash), and sampled a random Gaussian change every second, we would expect both of these to occur approximately every 10^{101} years.
Cauchy Distribution

- The normal distribution fails to sufficiently account for extreme changes.
- If we took the two most extreme events (The Emergency Banking Act increase and the Black Monday Crash), and sampled a random Gaussian change every second, we would expect both of these to occur approximately every

\[10^{101} \text{ years}\]

- Thus, the Cauchy distribution is a better fit for the long, fat tailed data.
Outline

1. Economic Assumptions
 - Common Assumptions
 - Initial Analysis

2. Findings
 - Distributions
 - Calculations

3. Summary
Fractal Dimension

\[C^d_H(S) := \inf \left\{ \sum_i r_i^d : \text{there is a cover of } S \text{ by balls with radii } r_i > 0 \right\}. \]

\[\dim_H(X) := \inf \{ d \geq 0 : C^d_H(X) = 0 \} \]

Above, we have the definition of the \textbf{Hausdorff Dimension}, \(D \).
Fractal Dimension

\[C_H^d(S) := \inf \left\{ \sum_i r_i^d : \text{there is a cover of } S \text{ by balls with radii } r_i > 0 \right\} \]

\[\dim_H(X) := \inf \{ d \geq 0 : C_H^d(X) = 0 \} \]

- Above, we have the definition of the **Hausdorff Dimension**, \(D \)
- Whenever the value of this measure exceeds that of the topological dimension of a space, we can consider this space a fractal
Above, we have the definition of the **Hausdorff Dimension**, D

Whenever the value of this measure exceeds that of the topological dimension of a space, we can consider this space a fractal

Essentially, this dimension tells us how spaces scale
Scaling

S&P 500 Closing Price

YEAR

INDEX PRICE (USD)

'27 '30 '32 '35 '38 '41 '44 '47 '50 '53 '56 '59 '62 '65 '68 '71 '74 '77 '80 '83 '86 '89 '92 '95 '98 '01 '04 '07 '10 '13 '16 '19 '22 '25 '28 '31 '34 '37 '40 '43 '46 '49 '52 '55 '58 '61 '64 '67 '70 '73 '76 '79 '82 '85 '88 '91 '94 '97 '00 '03 '06 '09 '12 '15 '18 '21 '24 '27 '30 '33 '36 '39 '42 '45 '48 '51 '54 '57 '60 '63 '66 '69 '72 '75 '78 '81 '84 '87 '90 '93 '96 '99 '02 '05 '08 '11 '14 '17
Scaling

S&P 500 Closing Price

INDEX PRICE (USD)

YEAR

'27 '30 '33 '35 '38 '41 '43 '46 '49 '52 '55 '58 '61 '64 '67 '70 '73 '76 '79 '82 '85 '88 '91 '94 '97 '00 '03 '06 '09 '12 '15 '18
Curve Fitting

S&P 500 Closing Price

INDEX PRICE (USD)
Curve Fitting

S&P 500 Closing Price

INDEX PRICE (USD)

YEAR

'27 '30 '33 '35 '38 '41 '43 '46 '49 '52 '55 '58 '61 '64 '67 '70 '73 '76 '79 '82 '85 '88 '91 '94 '97 '00 '03 '06 '09 '12 '14 '17
Curve Fitting

S&P 500 Closing Price

YEAR
'27 '30 '32 '35 '38 '41 '44 '46 '49 '52 '55 '58 '61 '64 '67 '70 '73 '76 '79 '82 '85 '88 '91 '94 '97 '00 '03 '06 '09 '12 '14 '17
INDEX PRICE (USD) 0 500 1000 1500 2000 2500 3000
Curve Fitting

Closing Price Hausdorff Dimension

Log(Curve Length) vs. Log(Population/Divisions)
Curve Fitting

Closing Price Hausdorff Dimension

Log(Curve Length) vs. Log(Population/Divisions)

Equation:

\[y = -0.3553x + 4.907 \]

\[R^2 = 0.9984 \]
Curve Fitting

High Price Hausdorff Dimension

\[y = -0.2842x + 4.835 \]

\[R^2 = 0.9963 \]
Curve Fitting

Low Price Hausdorff Dimension

\[y = -0.3142x + 4.8854 \]

\[R^2 = 0.9951 \]
Hausdorff Dimension and Hurst Exponent

- The closing price SP 500 has a Hausdorff dimension of 1.3553 ($D_{high} = 1.2849$, $D_{low} = 1.3142$)
The closing price SP 500 has a Hausdorff dimension of 1.3553 ($D_{high} = 1.2849$, $D_{low} = 1.3142$).

This value corresponds to a Hurst exponent of 0.6447 ($H_{high} = 0.7151$, $H_{low} = 0.6858$).
Hausdorff Dimension and Hurst Exponent

- The closing price SP 500 has a Hausdorff dimension of 1.3553 ($D_{\text{high}} = 1.2849$, $D_{\text{low}} = 1.3142$)
- This value corresponds to a Hurst exponent of 0.6447 ($H_{\text{high}} = 0.7151$, $H_{\text{low}} = 0.6858$)
- Comparing this to the Hurst exponent value of the closing price computed by Bayraktar, et. al, of 0.6156 ± 0.0531, we see that these results are consistent
Summary

- This Hausdorff dimension value indicates significant roughness and complexity.
Summary

- This Hausdorff dimension value indicates significant roughness and complexity.
- This Hurst exponent value indicates non-trivial long-term positive autocorrelation.
Summary

- This Hausdorff dimension value indicates significant roughness and complexity.
- This Hurst exponent value indicates non-trivial long-term positive autocorrelation.
- Markets are more erratic and random than conventional wisdom suggests.
Summary

- This Hausdorff dimension value indicates significant roughness and complexity.
- This Hurst exponent value indicates non-trivial long-term positive autocorrelation.
- Markets are more erratic and random than conventional wisdom suggests.
- Next Steps.
Summary

- This Hausdorff dimension value indicates significant roughness and complexity.
- This Hurst exponent value indicates non-trivial long-term positive autocorrelation.
- Markets are more erratic and random than conventional wisdom suggests.

Next Steps
- Increase the data set size to improve accuracy of these findings.
Summary

- This Hausdorff dimension value indicates significant roughness and complexity.
- This Hurst exponent value indicates non-trivial long-term positive autocorrelation.
- Markets are more erratic and random than conventional wisdom suggests.

Next Steps
- Increase the data set size to improve accuracy of these findings.
- Apply this curve fitting algorithm to different market data to determine better measures of volatility and risk.
B. Mandelbrot
How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension.

E. Bayraktar, H. Poor, & K. Sircar
Estimating the Fractal Dimension of the S&P 500 Index using Wavelet Analysis

R. Hudson & B. Mandelbrot
The Misbehavior of Markets